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SUMMARY

This study addresses matrix-dominated failures in carbon fiber/polymer matrix composite laminates in a

cross-ply lay-up. The events of interest are intralaminar fracture in the form of transverse cracks in the 90 ° plies and

longitudinal splitting in the 0 ° plies and intralaminar fracture in the form of 0/90 delamination. These events were

observed using various nondestructive evaluation (NDE) techniques during static tensile tests. Acoustic emission

(AE), x radiography, and edge view microscopy were the principal ones utilized in a real-time environment. A com-

parison of the NDE results with an analytical model based on the classical linear fracture mechanics concept of

strain energy release rate as a criterion for crack growth was performed. The virtual crack closure theory was incor-

porated with a finite element model to generate swain energy release rate curves for the analytical case. Celion car-

bon fiber/polyimide matrix (G30-500/PMR-15) was the material tested with cross-ply lay-ups of (02/906) s and

(04/904) s.
The test specimens contained thermally induced cracks caused by the high-temperature processing. The

analytical model was updated to compensate for the initial damage and to study further accumulation by taking into
account the crack interactions. By correlating the experimental and analytical data, the critical energy release rates
were found for the observable events of interest.



CHAPTER I

INTRODUCTION

Composite materials have become established as workable engineering materials and are now quite com-

monplace around the world. Because of their high stiffness-to-weight ratios, fiber-reinforced, laminated composite

materials are increasingly replacing conventional materials in a wide array of structures. Multilayered filamentary

composites exhibit great potential as structural materials in space vehicles, deep submergence vessels, radomes,

and other applications where they excel. With their outstanding mechanical properties combined with their unique

flexibility in design and ease of fabrication, it is no wonder that their use has surpassed that of other materials.

Laminated composite systems are constructed by stacking several plies, or layers. For a carbon/polymer

continuous fiber system, the plies consist of high-strength carbon fibers embedded in a low-strength, low-density

polymer matrix material while the matrix is in its molten state. Subsequently, the system is cured at specified pres-

sures and temperatures, resulting in a very light yet sturdy material. The underlying structural principle for these

materials is that the fibers be the primary load-carrying members while the matrix provides the structural integrity

by serving as a load-transferring medium, providing rigidity and protecting the fibers from exposure to unfavorable
environments.

The strength of a composite depends on the orientation of the fibers with respect to the direction of the

maximum anticipated stress. Alignment of the filaments with the direction of the maximum stress utilizes the mate-

rial most efficiently. The ability to carry a load is greatly reduced as the angle of the applied stress deviates from the

direction of the fibers (longitudinal) and reaches a minimum capability at 90 ° (transverse). It is not uncommon for a
ply to have a breaking stress and stiffness in the transverse direction one-fiftieth of that in the longitudinal direction.

Likewise, the longitudinal coefficient of thermal expansion is much smaller than the transverse.

Because the applied loads are not always unidirectional, laminate lay-ups are constructed so that the plies

are aligned in multiple directions. The difference in arrangement of the individual plies in a laminate causes internal

stresses and strains due to a Poisson' s effect during loading. Also, the thermal expansion mismatch results in differ-

ential contraction between the laminae on cooling to ambient temperatures subsequent to elevated temperature cur-

ing or postcuring operations.

In the case of (0/90) s cross-ply types, matrix cracks in the 90 ° ply, known as transverse cracks, have been
observed to occur at levels as low as 20 percent of the ultimate laminate tensile strain as shown by Harrison and

Bader (1983) and by Flaggs and Kural (1982). Because the final rupture of the laminate is primarily controlled by

the 0 ° plies whose ultimate tensile strain can exceed 1 percent, matrix cracking of this kind has often been tolerated

in design as some benign internal failure mode.

Wang, Chou, and Lei (1984) stated that the formation of intraply matrix cracking signifies the beginning of

a complex sublaminate crack development process. In the case of the cross-ply laminates, the onset of 90 ° ply trans-
verse cracking is followed by multiple cracks in that ply if the tension is monotonically increased. These matrix

cracks in the transverse ply can precipitate matrix cracks in other plies, as discussed by Bailey, Curtis, and Parvizi
(1979). For instance, intraply splitting of the 0 ° ply can form parallel to the applied tension and cross over the 90 °

ply transverse cracks. Under an ascending load, 0 ° ply splitting can occur in multiple locations. The interaction of

the two cracks gives rise to a highly magnified, three-dimensional stress field which develops at the intersection of

the two crossing cracks. Bailey, Curtis, and Parvizi (1979) and Reifsnider et al. (1983) proposed that the

interlaminar tensile and shearing components in this stress field can cause 0/90 interface delamination. At some

critical load level, propagation of the many localized delaminations results in a massive 0/90 interface separation

which is often the last matrix cracking event before catastrophic failure. Wang, Kishore, and Li (1985) stated that

laminates of more practical lay-ups suffer a similar matrix crack development process although the sequence of

events may be different. Bailey, Curtis, and Parvizi (1979) discussed experiments which have generally established

that the entire process is a generic phenomenon unique to the laminate type and the nature of the load. Although

such a statement implies the possibility for some form of analytical description, success has been achieved only for

laminates of simpler forms.

Wang and Crossman (1980) described the basic mechanisms of 90 ° ply transverse cracking under mono-

tonic tension by an application of the energy release rate concept of classical fracture mechanics. Multiple cracks in

the 90 ° ply were explained by Wang, Chou, and Lei (1984), who used a stochastic procedure incorporating the con-

cept of effective flaw distribution as an inherent ply material property. Free-edge delamination was also modeled by

Wang, Slomiana, and Bucinell (1983) using this approach.



ThenextsteptakenbyWang,Kishore,andLi (1985)wastoanalyticallymodelmatrixcracksinmultiple
pliesandtheirmutualinteractions.Thismodelingwasaccomplishedbyusingafiniteelementroutinetoanalyzethe
stressfieldsnearseveralimportantcrackinteractionregionsandthenemployingthesameroutinetosimulateany
possiblecrackgrowthresultingfromtheinteractions.UsingexperimentaldatafromCrossman,Warren,andWang
(1983),Wangetal.demonstratedthattheload-dependentprocessesofmatrixcrackingandcrackinteractionathigh
loadscouldbeanalyticallydescribed by a three-dimensional stress analysis and by a crack growth simulation based

on the techniques of fracture mechanics.

Wang, Kishore, and Li (1985) verified the above technique using an undamaged graphite-epoxy system. In

the study, they successfully predicted the onset of transverse cracks, longitudinal splitting, and 0/90 delaminations;
the latter initiated from the crossing of the transverse and splitting cracks.

In the present investigation, the system of crack interaction was more complex in the specimens because of

pretest damage due to residual stresses incurred during high-temperature processing. The data from the experimental

and analytical portions of the study were correlated to obtain the critical energy release rate values for the events of

interest. A carbon fiber/polyimide matrix (G30-500/PMR-15) composite system was employed. The observable

pretest damage consisted of 90 ° transverse cracks, 0 ° splitting, and small-angled cracks in the 90 ° plies located at the
base of the transverse cracks.

The experimental portion of this investigation implemented nondestructive evaluation (NDE) methods to

study the events of interest and the sequences of damage leading to final failure. Acoustic emission (AE), x radiog-

raphy, and edge view microscopy were the three techniques utilized for the real-time observations of the cracking
events. The material and testing equipment are discussed further in chapter II.

For the analytical portion, the three-dimensional finite element model was updated to more closely repre-

sent the physical system and its initial cracks. Strain energy release rate curves were produced to study crack growth

and crack interactions in the cross-plies. The modified numerical model consisted of a significantly finer mesh than

that employed in the studies mentioned earlier. Chapter III introduces Wang's theory and the finite element proce-

dure employed for the carbon/polyimide system. A general description of classical fracture mechanics is also

presented.
The results of the experimental and analytical portions of the study are given in chapter IV with a compari-

son and full discussion. Also, the feasibility of the acoustic emission method to distinguish between the matrix-

dominated events is discussed as is the effectiveness of the other techniques.

Chapter V summarizes this effort and indicates future directions. Experimental observations revealing un-

expected events are mentioned with respect to future considerations. Recommendations for improvements in both

the experimental and analytical methods are also presented.



CHAPTER H

EXPERIMENTAL METHOD

In this study, static tensile tests were conducted on carbon fiber/polyimide matrix (G30-500/PMR-15) lami-

nates. The specimens were tested to obtain the basic laminae properties. Then followed a thorough investigation of

their behavior in cross-ply lay-ups of the form (02/906) s and (04/904) s. The ply properties were employed in the ana-
lytical solution of the system. Transverse cracks in the 90 ° plies, splitting in the 0° plies, and delaminations between

the 0° and 90 ° plies were the events of interest examined in the cross-plies. Acoustic emission, x radiography, and

edge view microscopy were the real-time NDE techniques used to observe the specimens. By employing these meth-

ods, the specimens did not have to be removed from the load frame during inspection, which in turn eliminated any

possible fatigue damage that would have occurred during reloading.

The carbon/polyimide system employed for this study had extensive damage prior to tensile testing. A con-

siderable amount of splitting, transverse cracks, and shear-induced angled cracks at the base of the transverse cracks

were noted for both specimen types. This damage was caused by the residual stresses induced by the high curing

temperature during fabrication. Papadopoulos and Bowles (1990) and Simpson, Jacobs, and Jones (1991) present a
more thorough analysis and explanation of the thermal strains inherent in this material when it is laminated in a

cross-ply lay-up. In chapter IV, typical examples of the initial pretest damage are presented.

The objective of the experiments was to study the accumulation of further damage to the composite system

during monotonic loading and to study the behavior of the cross-plies prior to ultimate failure. By employing the
NDE techniques mentioned earlier, the occurrence of subsequent events was recorded in real time, thus giving an

accurate portrait of further crack propagation.

Materials

The polyimide laminates were made with Ferro CPI-2237 prepreg (G30-500/PMR- 15) and fabricated into

the laminates of interest by the Polymer Branch of the Materials Division at the NASA Lewis Research Center.

Prepregnated tapes were made by drum winding (12 turns/in.) and impregnating graphite fibers with a PMR-15 solu-

tion. Table I summarizes the properties of the G30-500 carbon fibers (BASF Structural Materials Incorporation) and
polyimide matrix material (NASA Lewis Research Center) as stated by their respective manufacturers. The dimen-

sions of the panels were 7.62 by 25.4 cm with a fiber volume fraction of 0.60. Each prepregnated stack was then

placed in a preforming mold and staged for 1 hr at 204 °C. After staging, the stack was placed in a matched metal

die. The composite was then molded by placing the die in a press heated to 316 °C and applying a pressure of

3.45 MPa when the die temperature reached 232 °C. After the temperature reached 316 °C, the pressure and the

temperature were maintained for 2 hr. The laminate was then cooled and removed from the mold when the tempera-

ture regressed to 232 °C.

The panels were cut into test size specimens (dimensions summarized in table II and fig. 2.1), and last,

tapered glass epoxy end tabs were attached. The average single ply thickness was 1.41x10 -2 cm.

TABLE I.--BASIC PROPERTIES OF FIBER AND

MATRIX MATERIALS

Properties G30-500

fibers

Tensile strength, MPa

Tensile modulus. GPa

Ultimate elongation, percent
Poisson' s raft o

Longitudinal
Transverse

Density, g/cm 3

Equivalent yarn cross-

sectional area, cm 2

PMR-15

matrix

3620 90

234 3.5

1.4 2.0

0.20 0.35

.25 .35

1.77 1.22

2.3x10 -3 _ _ _
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Lay-up

TABLE II.--DIMENSIONS OF SPECIMENS

Length, cm

Specimen, Gage,

L LG

(02/906) s 25.3 17.7

(O4/904) s 25.3 17.7
(O8) 25.3 17.7

(908) 14.0 6.40

(+45)2 s 25.3 17.7

Width

W,

cm

2.18
2.18

2.24

2.24

2.24

Thickness, cm Gage,

area,

Specimen, End tab cm 2
t, T

0.216 0.43 0.471

.213 .43 .465

.112 .33 .245

.107 .36 .239

.t12 .33 .245

LG

L

Figure 2.1 .--Specimen geometry.

Procedure

All the specimens had longitudinal and transverse electrical resistance strain gauges attached to provide

load-versus-strain plots. M-Bond 200 adhesive was employed to attach the gauges at a central location aligned lon-

gitudinally and transversely on the face of the specimen. Trial runs with gauges applied to both faces of the speci-

men confirmed that there was no bending in the specimen; hence, only two gauges on a selected face were required.

Finally, one edge of each sample was polished for edge view microscopy observation using 200-grit sandpaper fol-

lowed by 400 and 600 grits.

The tension testing was performed on a screw-driven Instron 8500 dynamic load frame with an upper limit

of 50 000 N. The tests were completed under load control with rates varying from 445 to 1335 N/min. The entire

study was conducted at a room temperature of 21+_3 °C and an ambient relative humidity of 60+_5 percent. The setup

is shown in figures 2.2 and 2.3.

Lamina Tensile and Shear Response

Determination of the basic ply properties was the first step in the experimental portion of this study. They

were obtained by performing static tensile tests on three elementary lay-ups as explained by Carlsson and Pipes

(1987). For the longitudinal properties, a (08) laminate was employed, for transverse properties, a (908), and for

shear characteristics, a (+45)2 s. In each case, at least three specimens were tested and their results averaged.

The measured material properties included

E] Young's modulus in the fiber direction

E 2 Young's modulus transverse to fiber direction

G12 in-plane shear modulus

_12,ult ultimate in-plane shear strain

gl,ul t ultimate tensile strain in fiber direction
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Figure 2.2._Geneml view of test facilities.
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Figure 2.3.--Data collection devices used during testing.



_2,ult

V12,V21

O'1,ult

O'2,ul t

*ult

ultimate tensile strain transverse to fibers

Poisson's ratios

ultimate tensile stress in fiber direction

ultimate tensile stress transverse to fibers

ultimate in-plane shear stress

Damage Inspection of Cross-Plies Using NDE

Determination of the load and strain at the addition or propagation of longitudinal splitting, transverse

cracking, and 0/90 delaminations in the cross-plies of the form (02/906) s and (04/904) s was the primary objective of

the testing. In all cases at least three tests were completed and the results averaged. The damage mechanisms of in-

terest were detected by using three NDE techniques: acoustic emission, fluorescent-dye-enhanced x radiography,

and optical microscopy with real-time video taping of the edge view.

Acoustic emission.--Acoustic emission data were collected during the mechanical testing. The equipment

implemented was manufactured by Physical Acoustic Corporation (PAC). Two transducers (Micro-30, with a nomi-

nal resonance frequency of 250 kHz) were attached using a viscous couplant and electrical tape. A 40-dB preampli-

fier (1220 A) with a plug-in filter of 100 kHz to 1.2 MHz was used with the two sensors. The output from the

preamplifier was fed to a signal acquisition system (Locan AT, fig. 2.3) that had the threshold set at 45 dB. The hit

definition time for signal recognition was 1000 p.s.

Acoustic emission system

I Preamplifier, 40 dB
i

T l
I F,ter,0.tto2M.zli \

IEnve,ope n ,esizerIi /
t i \

Threshold, 45 dB \
T i

I Discriminator I

_L !1 \ _
Peak R_se time ......

amplitude _, _ ', ("
..... ,- - -K /-- V (t),,

._.-_ Î_1tHtHLHtH_fi_,-¢:--- - Thres_hold

-- uUUUuuv,,o 22o
Event duration itime _

Counts
Time _, _>

An event definition

Figure 2.4.--Terminology for an acoustic event,



The terminology of an acoustic event is given in figure 2.4. The AE parameters utilized in this study were

peak amplitude and energy. The energy of an AE signal is measured in relative units and is expressed as

where R is the resistance input impedance of the voltage measuring circuit and V(t) is the time-dependent voltage.

Because E is a time integral, it can capture attenuation effects to some extent. Further, the energy measured is the

energy of the electrical signal generated by the transducer. It is neither the energy in the acoustic wave nor the

mechanical energy (energy release rate) released by the actual failure events.

For identifying the events of interest, an attempt was made to distinguish event signals by correlating them

to the other NDE data. Results of an AE study on kevlar/epoxy cross-plies by Rajan, Kishore, and Agarwal (1989)

demonstrated peak amplitude as the best indicator for characterizing the damage mechanisms. In another study by

Jeng, Kanji, and Yang (1989), it was shown that the AE signals generated by a carbon/polyimide system closely

resembled those recorded for carbon/epoxy and thermoplastic composites.

Duesing (1989) and Rajan, Kishore, and Agarwal (1989) proposed that a distinct range of amplitude peaks

was produced by the different failure events. For resin cracking, most events tended to be in the low amplitude range

whereas delaminations had separate peaks which occurred midrange in the distribution. Finally, fiber breakage was

conspicuous in the data because it emitted high amplitude events and exhibited a distinct peak on the amplitude dis-

tribution plot. Also, the energy of the event helped to distinguish transverse cracks from splitting due to the longer
duration and higher energy of the 0 ° ply event.

In a study by Awerbuch, Perkinson, and Kamel (1980), a thorough investigation of a carbon/polyimide

composite was conducted. In the investigation, several NDE methods were employed to examine the behavior of the

composites in various lay-ups. The AE method was among the techniques utilized. From the results of the tensile

tests, Awerbuch and others were able to differentiate fiber breaks from matrix failures by using the amplitude level

of the event signal. Even so, the conclusion of the study was that no correlation could be made between the specific

matrix failure event and the amplitude distribution characteristics for the carbon/polyimide system.

X Radiography._The in situ x-ray technique was used to record information periodically and was used to

monitor all the damage events of interest. Because the unique setup had the x-ray source located on the test rig, the

specimen did not have to be removed for an exposure. In taking the x rays, a Phillips 160-kV constant potential

source was used with a setting of 35 kV and 10 mA. The x-ray source/generator was capable of a maximum voltage
of 160 kV and a maximum current of 45 mA. "On the fly" exposure time was 35 sec. The source was located

22.9 cm from the composite specimen and 30.5 cm from the film giving a 1.2 magnification (see figs. 2.2 and 2.3).
To enhance the detection of defects, a sodium iodide dye penetrant was applied to the specimens. The exposures

were taken every 2225 N or when AE showed a high intensity of event occurrences. A schematic of the setup is

given in figure 2.5.
Edge view microseopy.--The principal NDE technique utilized in this study was edge view microscopy.

This technique was used to obtain the majority of the information on transverse cracks and edge delaminations.

Simple sight observations with a magnifying glass were used to follow the 0 ° splitting of the cross-plies because the

edge view did not carry this information.

Rather than gather data periodically as is usually the case with edge view microscopy, real-time observa-

tions were made. A charged coupled device (CCD) Sony high-resolution video camera was used with an Olympus

stereo microscope (Model SZ60 with a maximum magnification of 60) to view the specimen edge (fig. 2.6).

The microscope and the video camera were focused on a fixed area of the polished specimen edge. Infor-

mation was recorded and stored using a video recorder (VCR). A correlation between the video recording and the

load was made by relating the load rate to the time counter of the VCR. The area of focus on the specimen edge was

approximately 0.254 by 0.254 cm. It was assumed that this area was a good representation of the entire specimen

when numerous specimens (three or four for each laminate) were averaged.
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Figure 2.5.--In situ x-ray and materials testing system (Baaklini (1992)).
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Figure 2,6.--Real-time edge view microscopy apparatus,



CHAPTER IH

THEORETICAL BACKGROUND

The types of damage that are most frequently observed in fibrous composite laminates are the results of

matrix-dominated cracks. The first of these is transverse cracking which occurs in plies whose fibers are oriented

transverse to the applied load. The second type is longitudinal splitting in which the crack forms parallel to the fiber

direction when a displacement restriction in the transverse direction of the plies is imposed by the lay-up of the other

plies. The third type, interply delamination, is usually found near the free edge of the laminate or at the intersections

of transverse and longitudinal cracks. These events are schematically presented in figure 3.1. The cracks and their

growth are detrimental to the structural reliability and the durability of the laminate and may lead to ultimate failure.

In this chapter, the cracks of interest are discussed and described with respect to the strain energy release rate tech-

nique of classical fracture mechanics.

Multiple transverse cracks form in plies when a sufficiently large tensile stress exists transverse to the fi-

bers. For example, Wang and Crossman (1980) considered the cross-ply (0/90) laminate. When under a uniaxial

tension in the 0° direction, the 90 ° plies may suffer multiple cracks that usually occur at a relatively low strain level.

Wang and Crossman stated that existing design practices generally employ a two-dimensional laminate analysis and
calculate the stresses and strains in the individual laminae. The onset of cracks is inferred from the calculated

stresses or strains. They went on to say that this approach has not provided a fully satisfactory description of the

transverse cracking process.

In a study by Bader et al. (1979), cross-ply (0/90) graphite epoxy laminates having different 0/90 thickness
ratios were tested under uniaxial tension. They found that transverse cracks occurred at different strain levels de-

pending on the thickness of the 90 ° plies. They also showed that the tensile strain at the onset of multiple cracking

increased consistently with decreasing 90 ° ply thickness. In Bader's investigation, an energy consideration advanced

earlier by Aveston and Kelly (1973) was used to relate the onset of transverse cracking and the available energy

release for a fully developed crack. The procedure employed by Aveston and Kelly successfully described the trend

between the 90 ° ply thickness and the onset of transverse cracking. This ply thickness dependence was believed to

stem from the ply interactions in the laminate.

Delamination between plies is another mode of matrix-dominated failure that involves ply structural inter-

actions in the laminate, as discussed by Wang and Crossman (1980). The existence of interlaminar stresses, usually

Load direction

2 --_'-.__//S

I_ // Z/,o

k 0° ply

Figure 3.1.--Matrix-dominated cracking events. (1) Trans-
verse crack. (2) Longitudinal splitting. (3) Free-edge 0/90

delaminaUon. (4) 0/90 Delamination induced by crossing
cracks.
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found near the free edges of the laminate, are assumed to cause delaminations. Wang, Kishore, and Li (1985) con-

ducted a finite element analysis to determine the out-of-plane stress t_z acting on the 0/90 interface for cross-plies of

the form (02/902) s and (02/904) s. He found that this stress was tensile at the free edge and along any existing trans-
verse crack roots. He also noticed that the magnitude of t_z depended on the thickness or volume of the 90 ° plies.

In the case of transverse cracks, Wang declared that the dependence on thickness could not be explained by

a simple stress analysis. This approach would predict the same strain value for the onset of cracking independent of

the 90 ° ply thickness. He found that the observed thickness effect on the threshold strain for ply delamination and
transverse cracking may be explained from an energy point of view. He reasoned that the actual amount of strain

energy in the plies of a laminate and the manner of its release during a damage event play an important role in the
crack initiation and the crack growth behavior.

The strain energy release rate concept of classical fracture mechanics was employed by Rybicki,

Schmueser, and Fox (1977) to describe the behavior of free-edge ply delamination. Wang, Chou, and Lei (1984)

based their use of the concept on the assumption that small cracks or interlaminar defects exist in the laminate.

These flaws propagate when the required condition is met for the crack to extend. Rybicki showed that the growth

of the defects existing near the ply interface/free-edge region is stable initially; that is, the applied load must be
increased to extend the delamination. The quantity measuring the material resistance to a crack event is the critical

energy release rate G C for the particular event. When stable crack growth occurs and a new crack surface is created,
the release of strain energy is experienced. The rate of available energy per unit crack surface G can be calculated

by an elastic stress analysis. The available strain energy G is viewed as the driving force for further crack extension

which occurs when G = GC,. If G < G c, the crack remains stationary until the applied load is increased, whereas the

crack growth becomes unstable when G > G C.
Computationally, there are numerous ways to evaluate the energy release rate. Wang and Crossman (1980)

explained that G is generally a complicated function of crack location, crack geometry, ply stacking sequence, ply

properties, ply thickness, and applied loads. Because of the analytical complexity, the most practical approach for

calculating G was presented by Rybicki and Kanninen (1977). They used a finite element analysis in conjunction
with a crack closure technique. The event of interest in their study was free-edge delamination at the 0/90 interface

in cross-ply laminates. The main assumptions of the analytical and numerical models were that edge delamination
involved only matrix-dominated fracture, which was assumed elastic and brittle, and that the crack path was parallel

to the ply interface. The numerical procedure involved introducing a virtual crack of known dimension and comput-

ing the work needed to close it.
The energy release rate concept and the finite element analysis employed by Rybicki were further devel-

oped by Wang, Kishore, and Li (1985) to also include 90 ° transverse cracks, 0 ° splitting, and 0/90 interface delami-
nations. A finite element model was constructed to calculate the energy release rates of each event individually or to

simulate further crack development due to their interactions. In each case, a theory was formulated on the basis of

conceptual and physical considerations. For this investigation, further refinements were made to the finite element
model. These revisions of the three-dimensional FE model were made to better replicate the pretest-damaged high-

temperature carbon fiber/polyimide matrix system of interest.

Description of Energy Release Concept

In classical fracture mechanics (see Broek, 1986), it is assumed that energy is dissipated when a new crack

surface is created within a stressed body. Crack growth arises at manmade or naturally occurring flaws. The strain

energy dissipation normalized with respect to crack surface depends on the material and is denoted as the critical

energy release rate G c. Furthermore, G C is a function of the crack mode. In general, three types of crack modes
exist: the opening (mode I) and the shearing (modes II and III). These events can occur simultaneously as mixed

modes (I-II, I-III, etc.). The three crack mode events (I, II, and IU) are illustrated in figure 3.2.
For a crack to extend, there must be enough strain energy in the material to induce further growth. As

pointed out earlier, the available strain energy is denoted by G and is viewed as the driving force for further crack
extension. One method of calculating G is to determine the energy dissipated when a crack extends an infinitesimal

amount. The energy release rate is defined for this type of virtual crack extension as

dW dU
G - (3.1)

da da

11



l-Opening
mode

I"

-Antiplane
shear mode

II-lnplane
shear mode

Figure 3.2._Standardized crack extension modes.

where W accounts for the work of any externally applied tractions per unit width, U is the accumulated strain energy
of the body per unit width, and a is the initial crack length. The physical significance of the energy release rate cor-

responds to the rate of change of the system energy per unit area of crack growth. Accordingly, the development of

the fracture model for sublaminate cracks rests on the ability to accurately calculate G and physically measure G C
for a given failure mode.

When taken as a criterion for crack growth, the energy release rate also provides a means of identifying

stable crack growth, as discussed by Rybicki, Schmueser, and Fox (1977). Stable crack growth can be considered in

terms of the shape of the curve which shows energy release rate versus crack length. Rybicki explained that a mono-

tonically increasing curve (fig. 3.3) indicates unstable crack growth. Consider a flaw with an initial crack length ao.

The critical value of G associated with crack extension corresponds to the load Po" As the crack extends to ao + Aa,

the curve indicates that the amount of energy available to drive the crack exceeds the critical value G c . Thus, the
crack will continue to grow in an unstable fashion. Rybicki also gave an illustration of a stable crack growth in fig-

ure 3.4. Again, the critical value of P for crack extension is denoted by Po" However, as the crack grows to a length

a ° + An the amount of available energy to drive the crack decreases to a value below the critical value of G C. The

crack continues to grow to length acr. At this point, the crack will not propagate until the load is increased above Po"
With a crack length of acr, an increase in load to the critical level will induce an unstable growth because of the up-
ward trend of the curve.

Rybicki stated that there are numerous ways to evaluate the energy release rate. With the exception of sev-

eral simple component geometries with simple boundary conditions, the direct evaluation of G from equation (3.1)

can be quite complex. A more practical computational procedure uses the definition of G in terms of the crack clo-

sure integral as described by Rybicki and Kanninen (1977).

12



(9
d

t_

O
c
Ill

_P P = Constant curves
_-a o Increasing

__J . values of P

aol lao +
I L

Crack length, a
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Figure 3.4._Energy release rate versus crack length for
stable crack growth (Rybicki, Schmueser, and Fox (1977)).

Calculation of Available Energy Release Rate

Analytical solutions for the available energy release rate are difficult to obtain because the stress field

found at the tip of the crack has a singularity. This singularity requires tedious mathematical derivations. Direct

solution methods for G are available; among them are the well-known J-integral and the virtual crack closure pro-

posed by Irwin (1958).

Irwin observed that the strain energy released during a virtual extension of an existing flaw is equal to the

work required to close it. The closing of the virtual crack extension Aa yields the solution for the required surface

traction vector X distributed over Aa. The work done can be expressed as

G= lim_a__02_af: (X" Au)da
(3.2)
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where Au is the relative crack surface displacement vector acting along the incremental length Aa. Note that both Z

and Au depend on the crack size a and the applied far-field stress.

If the crack extension involves all three modes (I, II, and III), the vector product of equation (3.2) will give

a sum of three scalars associated respectively with G t, Gtl, and G11r Irwin's method also has the distinct advantage
of being particularly adaptive to finite element techniques. Specifically, Rybicki and Kanninen (1977) employed a

finite element model to evaluate G for a line crack in a plane. The crack tip stress traction E and the displacement

vector Au in equation (3.2) are approximated by the nodal forces and displacements, respectively.

Consider a laminate having a finite width and a stacking sequence such that tensile interlaminar normal

stress erz is induced near the free edge when a far-field tensile strain eo is applied. Next, assume that an effective
interlaminar flaw of size a exists along the edge as illustrated in figure 3.5. When the free-edge stress reaches a criti-

cal value, the crack will propagate. As explained by Wang, Slomiana, and Bucinell (1983), this event constitutes the

onset of free-edge delamination, and the concurrent stress state is termed the threshold stress.

Figure 3.5 depicts a typical G-curve for an assumed flaw size a obtained by the finite element crack closure

procedure. For a given value of eo, G is dependent on the flaw size as shown in the figure. It is seen that G rises

sharply from zero at a = 0, and reaches an asymptotic value Gra at a >_am. The value ofa m is usually of the order of

the ply thickness. If a laminate is subjected to a far-field strain of eo, and a sublaminate crack is simulated, the crack-

tip energy release rate can be expressed in the general form

Ge = Ce • t. e2 (3.3)

where t is the linear scale between the actual physical model and the finite element model. The value for t is usually

taken as one ply thickness. The coefficient function Ce, which is a function of the nondimensional crack length a/t,

is calculated by imposing a far-field strain of eo = 1 on the finite element model.
A thermal strain due to a temperature change AT can also induce a crack extension. The equation relating

AT and the energy release rate can be expressed as

G T = CT •t. (AT) 2 (3.4)

where Cris also a function of a/t. The entire Crcurve is generated numerically by imposing AT = -0.56 °C (-1 °F).
Combining equations (3.3) and (3.4) gives the total energy release rate due to an applied far-field strain and

the temperature load. The combined effects are represented as

G(a)

Gr_

_a

a m

Figure 3.5.mTypical shape of energy release rate G(a) for
edge delamination (Wang and Crossman (1982)).
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Both coefficient functions Ce and C T are independent of the applied load. Thus, the functions are characteristic for a

particular type of crack growth and are denoted as the energy release rate coefficient functions.

In practice, polyimide-based laminates are subjected to extensive thermal residual strains after curing. The
effects of the residual stresses can be evaluated by assuming a uniform temperature change

AT = T- To (3.6)

Equation (3.6) represents the difference between the processing stress-free temperature and the working tempera-

ture.

Virtual Crack Closure Technique

Rybicki and Kanninen (1977) used the crack closure integral to evaluate Gt and GII employing the virtual

crack closure technique (VCCT). They evaluated the mode I and mode II crack closure integrals from equation (3.2)

utilizing nodal forces and displacements from two successive finite element runs. Figure 3.6 illustrates a simple two-
dimensional finite element representation of a crack-tip region. Here, a crack of length a is shown with the crack tip

at node c. The finite element solution determines the displacement components (u,v,w) c of the crack tip node c. An

incremental crack extension Aa is introduced by replacing the crack-tip node c with two separate nodes f and g as

shown in figure 3.6. With this new crack geometry taken into account, the finite element solution for nodal displace-

ments (u,v,w)f and (u,v,W)g is found for nodesfand g, respectively. The crack extension is then closed by applying
equal and opposite forces at nodesfand g such that their common displacements match the displacement found ear-
lier for node c. These forces are actually the internal nodal forces which existed at node c before it was opened.

The work required to close the crack extension is approximated by

(3.7)

where F x, Fy, and F z are the components of the nodal forces required to close the nodesfand g together. Thus, the
energy release rates for the three crack extension modes are approximated by

Y,v Y,v

c ; ; =,-X, u =

aL •

Z,w Z,w

e+,_l ,-

i,,-X, u

Figure 3.6.--Finite element mesh at crack tip illustrating crack closure technique (Wang and Crossman (1982)).
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(3.8)

Fz(Wf -Wg)

Gill = 2An

The main advantage of the VCCT is that it requires only the use of simple continuum elements. This eliminates

much of the difficulty with inverse square root singularity elements which were previously utilized at the crack tip

when solving fracture mechanics problems by the finite element method (Broek, 1986).
For this study, experimental results were correlated with analytical data to calculate the critical strain en-

ergy release G c for the events of interest. The value of G c was found by implementing equation (3.5). The threshold
strain of a specific cracking event was obtained from tensile tests and was combined with the coefficient strain re-

lease rate functions produced by the finite element analysis to calculate G c for a particular damage sequence.

The values of G c are dependent on the specific cracking event, the crack propagation path, the laminate
lay-up, and the method of loading for the specimen. As shown in Wang and Crossman (1982), the total critical en-

ergy release rate is also a function of the crack mode ratios (GlcdGllo GIc/GlllO etc.; see eq. (3.8)). Although G c
varies for the different matrix-dominated cracks, the values are of the same magnitude. Hence, comparisons of the

Ce and C T curves for the different events can give information about their sequence of occurrence.

Finite Element Model

The numerical procedure (see Wang, Kishore, and Li (1985)) employed for the present analysis utilizes a

computer code which was developed for independent and self-contained operation. The main function of the pro-
gram is to numerically simulate the initiation and growth of a plane crack in a three-dimensional solid, specifically,

transverse cracking, delamination, splitting, or delamination with a split in composite plates. The plate may be sub-

jected to mechanical loading, thermal loading, or both.
During crack extension, the changes in the boundary conditions as the crack grows are automatically ad-

justed in the program. There is no limitation to the number of layers or the stacking sequence. The layers may have

different thicknesses and material properties. Each layer is assumed to be a homogeneous, orthotropic elastic me-

dium with one of its principal axes aligned in the thickness direction of the plate (z-axis).

The algorithm contains three independent programs: the preprocessor, the main code, and the post-

processor. The preprocessor requires input data regarding the specimen geometry, the finite element mesh plan, the

layer material properties, the boundary conditions, and the double nodes (double nodes are a pair of nodal points

which occupy the same spatial position). The output of the preprocessor contains information pertaining to the finite

element mesh (i.e., the numbered nodes and the double nodes). The output is then supplemented with the crack-

opening-sequence data set.

The main code (KSAP II) performs the numerical calculations in the solution of the three-dimensional

finite element model using an 8- or 21-node solid element with three degrees of freedom (x,y,z) for each node. The

output data from the preprocessor and the crack-opening-sequence data serves as the input for this program and

crack extension is simulated in a step-by-step fashion. At each increment, the program computes the released energy

as well as the stress and displacement fields.

The KSAP II code has the capability to simulate crack opening along the surface which passes through the

points where double nodes are prescribed. Initially, the nodes are assigned equal displacements and the system of

linear equations is solved with the appropriate boundary conditions. The nodal forces, the nodal displacements and

the stresses at the prescribed locations in each element are also calculated. The nodal forces of the double nodes are

the internal forces holding those two nodes together. The crack opening is simulated by releasing the boundary
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conditionsofthedoublenodes(theirdisplacementsarenolongerequal).Onceagain,thesystemof linearequations
issolved.Thedifferenceinthedisplacementsbetweenthetwonodeswillbethecrack-openingdisplacement.The
internalforceswhichheldthenodestogether(foundintheprecedingiteration)canbeusedtocomputethestrain
energyreleaseasthecrackopeningissimulatedthroughthenode.Thisprocedureiscontinueduntilall thedouble
nodesareopened.Hence,thestrainenergyreleasedasthecrackpassesthroughsuccessivedoublenodescanbe
calculatedateachstep.Ateachstep,thecrackopeningcanbesimulatedthroughoneormorepairsofdoublenodes,
andthereisnolimitationonthecrackfrontshape.If thecrackissimulatedalongasymmetricplane(i.e.,transverse
cracks),thereisnoneedfordoublenodesinthatplane.Thecrackextensioncanbesimulatedbysimplychanging
theboundaryconditionsofthenodesonthatplanefromzerodisplacementtofree-forceboundaryconditions.

Finally,theenergyreleaseratesarecalculatedbydividingtheenergyreleasedduringthecrackgrowthby
theareaofthecrackextensionataparticulariteration.ThevaluesofC e and C T can be derived by simply dividing

the energy release rates by the normalizing factor, which in this case is the thickness of one ply t. The output data
from KSAP II contains the details of the finite element mesh as well as the solution of the laminated plate for the

given crack simulation.
For the model in this study, 3220 elements were utilized. The solid 21-node elements had three degrees of

freedom (x, y, z) for each node. A value of one was employed for the scale factor t of equation (3.5). Because of

symmetry, only one-quarter of the plate cross section was modeled (see fig. 3.7). An initial transverse crack was

represented for each case by having zero load boundary conditions on one end of the model for the 90 ° plies. The

sequence for nodal release was chosen to produce the maximum energy release and was determined by numerous
trial and error runs.

Figures 3.8 and 3.9 depict the nodal release sequences which produced the maximum strain energy release

for the split-induced and free-edge-induced delaminations. The secondary transverse crack was located at a centered
location in the finite element model; it was initiated at the midplane and propagated towards the 0 ° plies. The 0 °

split was initiated at the end containing the initial transverse crack and was propagated parallel to the induced load.

J _-Transverse
crack

Figure 3.7.--Finite element network for symmetric laminate modeled with initial transverse crack (Wang, Kishore, and
Li (1985)).
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CHAPTER IV

DISCUSSION OF RESULTS

In this chapter, a description of the results obtained from the experimental and analytical portions of the

study is presented. The basic ply properties are given, and the observed behavior of the cross-plies is discussed. By

combining the experimental data with finite-element-produced strain energy release rate curves, the critical energy
release rates were calculated for specific matrix-dominated events.

Experimental Results

For all the results reported in this chapter, each represents the averaged values from three or four replicate

specimens. The data scatter for the experimental results is discussed in the text and the average values are displayed
in the tables. The statistical nature of the data scatter is not discussed.

Basic PlyProperties

Tables III and IV present the basic ply properties, and figures 4.1 to 4.3 display the typical stress-versus-
strain behavior of the laminates tested with the replicated averages given in the figure legend. The predicted values

in table IV were calculated by using basic laminate equations found in any introductory composites course (see

Agarwal and Broutman (1990)). For consistency, the subscript 1 was employed to represent the longitudinal direc-
tion for the experimental results; the subscript 2, for the in-plane direction; and the subscript 3, for the out-of-plane

direction.

The rule of mixtures was utilized for predicting values of E l, O'l,ul t, el,ul t, "¢12,ult' _12,ult' and V12. The

Halpin-Tsai equations were employed for calculating E12 and G12. For determining cr2,ult and e.2,ult, the strength-of-
materials approaches of stress concentration factor and strain magnification factor were used. Finally, v21 was found

by the relationships between the engineering constants and the compliance matrix.

TABLE III.--FIBER VOLUME

FRACTIONS

Lay-up

(02/906) s

(04/904) s

(Os)
(9o8)
(+45)2s

Fiber volume fraction

(range)

0.60(0.59to0.61)

.57 (.55to.59)

.58 (.55to.61)

.59 (.58to.59)

.56(.54to.58)

TABLE IV.--MATERIAL CONSTANTS FOR CAR-

BON FIBER/POLYIMIDE MATRIX

(G30-500/PMR-I 5)

Properties Experimental

Modulus, GPa

Tensile, E l

Transverse, E2

Shear, GI2

Ultimate strength, MPa

Tensile, Ol,ul t

Transverse. O2,ult

Shear, "_|2.uh

Poisson's ratio

Major, v12

Minor, v21

Ultimate strain, percent

Tensile, e I .ult

Transverse, E2.uh

Shear, Tl2,uh

123

7.9

4.15

1744

30.2

58.5

0.25

.0077

1.5

0.4

2.2

Predicted

139

16

2137

30.6

0.26

.016

1.5

.34
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Figure 4.1 .--Typical stress strain behavior for (08) longitudinal lami-

nate (G30-500/PMR-15). Average of replicates: tensile modulus,

E 1, 123 GPa; major Poisson's ratio, u12, 0.25; ultimate tensile

strength, _rl,ul t, 1744 MPa; ultimate tensile strain, El,ul t, 1.5 percent.
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Figure 4.2.--Typical stress strain behavior for (908) trans-

verse laminate (G30-500/PMR-15). Average of replicates:

transverse modulus, E2, 7.9 GPa; minor Poieson's ratio,

u21, 0.0077; ultimate transverse strength, _r2,ult, 30.2 MPa;

ultimate transverse strain, _2,ult, 0.4 percent.
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Figure 4.3.--Typical shear response obtained from (:1:45)2s

laminate (G30-500/PMR-15). Average of replicates: shear

modulus, G12, 4.15 GPa; ultimate shear strength, _12,ult,

58.5 MPa; ultimate shear strain, 3_12,ult, 2.2 percent.

An observation of the experimental data for the (08) laminates revealed that the measured moduli varied by

+_5percent from the experimental average for the group and exhibited linear behavior up to failure. The ultimate
stress and ultimate strain had a scatter of +2 and +5 percent, respectively. As seen in table IV, the averaged results

were lower than the predicted values.

For the unidirectional transverse plies (908), the individual moduli varied from the group average by +1

percent and exhibited linear behavior up to failure. A variation of +15 and +12 percent was recorded for the ultimate
stress and strain, respectively. The experimental transverse modulus was 50 percent of the predicted value whereas

the experimental ultimate strain was actually 17 percent higher. The strengths were within 1 percent.
The shear moduli, obtained using the (+45)2s laminates, deviated by +5 percent from the average. The

variance within the test group for the ultimate shear stress and the ultimate shear strain was +10 and +12 percent,

respectively. Predicted values were not calculated because of the difficulty in obtaining the shear properties for the
G30-500 carbon fibers.

The major Poisson's ratio of the specimens had a variation of-t-4 percent from the experimental average.

The mean was 4 percent lower than the predicted value. The minor Poisson's ratio within the test group had a scatter
of +7 percent from the average experimental value. This outcome for the minor ratio was one-half of the predicted

result using the ratio v12/E12 = v21/E21. The experimental data were used in the equation for the values of moduli
and major Poisson's ratio. Inaccuracies of the transverse gauges at very small strains were the probable cause of the

discrepancy. The transverse strains in the 90 ° unidirectional laminate only reached a maximum of 0.0031 percent.

A comparison of these ply properties with results of past studies that employed the same material system

was conducted. The previous investigations were by Awerbuch, Perkinson, and Kamel (1980) and Papadopoulis and

Bowles (1990). All the values were within a statistically acceptable range. Any variances were attributed to different

fiber volume ratios and the quality of processing.

Finally, the coefficients of thermal expansion and the stress-free temperature were obtained from

Papadopoulos and Bowles (1990). The average values for the longitudinal direction _l and transverse direction a 2
were -1.03×10 -6 and 27.9×10-6/°C, respectively; 346 °C was the average stress-free temperature.

Cross-Ply Damage Inspection Results

Among the three NDE methods chosen for the experimental portion of this study, only one was able to

recognize the damage events of interest. The real-time edge view microscopy provided the most reliable source of
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information. From this source, initial damage and any propagation from these cracks could be observed as the load
was increased.

When the magnified edge view was examined, the propagation of a crack was either very obvious or was

manifested in the bubbling of the fluorescent dye used to enhance the x-ray images. This dye leakage was usually

the first sign of a localized 0/90 delamination growth at the base of a transverse crack. The photographs shown in

this report are digitized images taken from the video tapes. Because of this transferring process, the quality of the

picture was somewhat reduced; hence, the actual events shown may be difficult for the reader to interpret.

The in situ x-ray technique was excellent for studying the 90 ° ply transverse cracks and 0° ply splitting,

although it was poor for interpreting the results of other events. The possible reason for this involved the width of

the crack and the density of the sodium iodide dye penetrant. Because of the small size of some crack openings, the

penetrant could not enter the crack space, making detection difficult.

The various matrix cracking events could not be discerned using the acoustic emission data. Amplitude,

energy, and counts were plotted against strain and compared with observations of the edge view. No positive corre-

lation could be made for the two techniques.

When working with materials with a high density of damage, the AE signals produced from further propa-

gation of cracks can be altered by the gaps caused by the earlier damage. This attenuation effect can cause varia-

tions of the amplitude and energy signatures. However, distinct high-amplitude peaks were recorded in this study

and were probably events of fiber breakage. A description of typical AE plots for each lay-up is presented later in

this chapter.

Sequence of Cracking Events in Cross-Plies

As previously mentioned, as a result of high-temperature processing, both cross-ply lay-ups had extensive

pretest damage in the form of 90 ° ply transverse cracks, 0 ° ply splitting, and shear-induced angled cracks at the

bases of the transverse cracks. The purpose here was to study further accumulation of the damage and to determine

the feasibility of using composite laminates which contain initial cracks.

Figures 4.4 and 4.5 show the pretest damage observed by using edge view microscopy. Seen in these fig-

ures are the transverse cracks surrounded by the shear-induced angled cracks. In both lay-ups, angled cracks existed

at the bases of the transverse cracks. For the (02/906) s type, the angled cracks were observed at the bases of about

half the transverse cracks, whereas the (04/904) s laminates had less frequent occurrences, at about one in four of the
transverse cracks. These cracks were assumed to be induced by the interfacial shear stresses which exist in the

vicinity of the transverse cracks in the 90 ° plies. Additional pretest high-magnification edge view observations

(X200 and X400) were made to locate any other cracking events. No other damage events were noticed.

Presented in table V are the results for the cracking events observed in the cross-plies studied and figures

4.6 and 4.7 display typical stress-versus-strain plots for the two lay-ups. The averaged results of the replicates are

given in the legend of each figure. Because both lay-ups exhibited linear behavior to failure, percent strain was used
as the measurement to mark the time of the occurrence of an event. For each cross-ply lay-up, an initial test was

loaded to failure. Also, one of the three fully observed replicates was stressed to failure. The data to calculate ulti-

mate stresses and strains came from two specimens for each cross-ply type. The remaining replicates were loaded to

a point where all the matrix damage sequences were experienced and further loading was unnecessary.

Saturation of 90 ° transverse cracks and 0 ° splitting was evident in both the (02/906) s and the (04/904) s
lay-ups before tensile testing as shown by x rays of initial and near failure loads. These exposures presented in fig-

ures 4.8 and 4.9 show that no new transverse or longitudinal cracks occurred as the load was increased.

Figure 4.10 presents a schematic of the events which occurred as the cross-plies were loaded. For both lay-

ups, the first cracking event to occur was the further accumulation of angled cracks. These cracks were assumed to

initiate from unseen defects on the 0/90 boundary and propagated towards the major transverse crack. The height of

these cracks was usually about one-third of the 90 ° layer thickness. The actual depth of the crack in the specimen

could not be determined because the event could not be interpreted from the x radiographs. Figures 4.11 and 4.12

are the photographs of the angle cracks obtained from the real-time edge view microscopy. As expected, the

(02/906) s laminate had a lower threshold strain level (0.46 versus 0.68 percent).
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{a)

(b)

Figure 4.4.--Typical pretest edge view of (02/906) s laminate. (a) Magnification, 20.

(b) Magnification, 40.
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(a)

(b)

Figure 4.5._Typical pretest edge view of (04/904) s laminate. (a) Magnification, 20.

(b) Magnification, 40.

TABLE V.--SUMMARY OF CRACKING EVENTS

Lay-up F_,xpcrimcntally observed

event

(02/906) s Transverse cracking

Longitudinal splitting

Additional angled cracks

0/90 Delamination

Localized fiber break

Ultimate failure

(04/904) s Transverse cracking

Longitudinal splitting

Additional angled cracks

O/90 Delamination

Localized fiber break

Ultimate failure

Threshold strain,

percent

(a)

Co)

0.46

Onset at 0.69

.74

1.1

(c)

(d)

0.68

Onset at 0.82

1.0

1.2

aSaturated before test, 1)-/in.

bSaturated before test, 15/in.

cSaturated before test, 1(din.

aSaturated before test, 1O/in.
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Figure 4.6.--Typical stress strain behavior for (02/906) s lami-

nate (G30-500/PMR-15). Average of replicates: tensile

modulus, E 1, 38.4 GPa; major Poisson's ratio, u12, 0.069;

ultimate tensile strength, _1 ,ult, 383 MPa; ultimate tensile

strain, _1 ,ult, 1.1 percent.
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Figure 4.7.mTypical stress strain behavior for (04/904) s lami-

nate (G30-500/PMR-15). Average of replicates: tensile

modulus, E 1 , 76.4 GPa; major Poisson's ratio, u12, 0.28;

ultimate tensile strength, _1 ,ult, 840 MPa; ultimate tensile

strain, el ,ult, 1.2 percent.
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(a)

Figure 4.8._Radiographs of (02/906) s laminate displaying

transveme and longitudinal cracks. (a) Initial pretest

damage. (b) 0.90 percent strain.
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Figure 4.9,--Radiographs of (04/904) s laminate displaying

transverse and longitudinal cracks. (a) Initial pretest

damage. (b) 0.95 percent strain.
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Figure 4.10.--Cmcking sequence.
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(a)

(b)

Figure 4.11 ,--Occurrence of angled crack in (02/906) s laminate. (a) Before.

(b) After.
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(a)

Figure 4.12._Occurrence of angled crack in (04/904) s laminate. (a) Before.

(b) After.
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In the case of the (02/906) s plies, the mechanically induced angled cracks were recorded for two of the three

specimens studied. The threshold strains for the two specimens were 0.40 and 0.51 percent. For the (04/904) s lami-
nate, mechanically induced angled cracks were observed in all three of the replicas tested and ranged from 0.51 to

0.78 percent.
The next cracking event observed was the appearance of 0/90 edge delaminations. For both lay-ups, this

event was first documented to occur at the bases of the transverse cracks which had no noticeable pretest localized

delamination. Again, the depth of the delamination into the specimen could not be determined because the x rays
could not detect the delaminations. Note that these events were difficult to observe, even when viewing the video

tapes of the magnified edge view. The cracks appeared as a bubbling of the fluorescent dye; this dynamic action was

lost in the transfer to photographs. Because the crack growth was unrecognizable in the static prints, no photographs

of the localized delamination are presented. As expected, the event appeared at a lower strain in the (02/906) s than in

the (04/904) s laminate (0.69 versus 0.82 percent).
The 0/90 edge delamination growth was observed in each of the (02/906) s specimens tested and had a

threshold strain range of 0.60 to 0.84 percent within the group. For the (04/904) s plies, the event was recorded in

only one of the replicates.
The final matrix event to occur was the unstable propagation of the delamination in the length direction

followed immediately by localized fiber breaks. Figures 4.13 and 4.14 display the edge views of the event, and fig-

ure 4.15 represents the event schematically. The event was bounded by the 0° ply split, 0/90 interface, and the free

edge. Fiber breaks occurred close to the end tabs. Again, the (02/906) s experienced the event at a lower strain than

did the (04/904) s (0.74 versus 1.0 percent). This was the last damage event observed before ultimate failure of the

specimens.
The range of threshold strain for this event in the (02/906) s laminates was 0.61 to 0.87 percent. Again, the

delamination/localized fiber break was only recorded for one of the three replicas in the (04/904) s specimens; the

threshold strain was 1.0 percent.

Acoustic Emission Results

The following discussion is a typical representation of the results obtained for each of the two lay-ups. A

description of the AE signature plots employed is presented. Figures 4.16 and 4.17 display the results of AE in the

form of amplitude versus strain, energy versus strain, and cumulative counts versus strain. Note that the (02/906) s

laminate plots contain gaps in the data because the load was held for a few seconds during x-ray exposure of the

specimens tested early in the program. Also, the first laminate type was strained only to a point when all events of
interest were observed and then the tests were ended. For the (04/904) s laminates, the tensile tests were continuous

even during exposure and the laminates were studied up to failure.
For both cross-ply lay-ups, the AE signatures could not be used to discern the different matrix-dominated

events, although fiber failures were recognized. In the plots of amplitude versus strain for the (02/906) s laminates,

the majority of events occurred below 8000 dB and were indistinguishable. The peaks which occurred above 9600

dB were correlated with the edge view data and were recognized as fiber breaks. Signals were apparent at about

0.24 percent strain and steadily increased in amplitude and counts.

For the case of the (04/904) s laminates, the majority of events occurred below 6000 dB with distinct peaks
for fiber breaks above 8000 dB (fig. 4.17(a)). Significant event occurrences for the lay-up began at about 0.75 per-

cent strain and increased abruptly in amplitude level and cumulative counts.

In the plots of energy versus strain, the fiber breaks had midrange peaks as compared with the other events.

The occurrences with the highest energy peaks could not be correlated with any observable cracking sequence in

either lay-up. Because the energy of the AE signal is a function of time, a crack propagation such as delamination

was the probable cause, although at this stage it could not be verified.
The plots of cumulative counts versus strain differed between the two lay-ups. The (02/906) s laminates

showed a simple linear rise in cumulative counts whereas an exponential relationship was observed for the (04/904) s

lay-up. For the exponential case, a slow accumulation of counts was observed until 0.80 percent, followed by a steep

increase in activity up to failure.
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(a)

(b)

Figure 4.13.---_ccun_nce of edge del_ination and localized fiber break

in (02/906) s laminate. (a) Before. (b) After.
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(a)

(b)

Figure 4.14._Occurrence of edge delamination and localized fiber break

in (02/904) s laminate. (a) Before. (b) After.

0 ° Ply split

/
/

Localized
fiber break

in 0 ° plies

Figure 4.15._Localized fiber break.
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Analytical Results

For the analytical portion of this study, the finite element method of chapter HI was employed to calculate

the strain energy release rate (SERR) coefficient function for four matrix-dominated events. The events were sec-

ondary transverse cracks, longitudinal splitting, and two types of 0/90 delaminations: delaminations induced at the

transverse crack and the free edge and those initiated at the crossing of a longitudinal split and transverse crack (see

fig. 3.1). For each laminate, Ce and CT curves were produced for the events of interest. The plots display the three
individual components of the SERR coefficients (see eq. (3.8)) and the sum of these components which were uti-

lized in equation (3.5).

The limitations of the NDE techniques prevented the observation of delaminations which developed within

the specimen. Also, it was shown that transverse cracks and longitudinal splits were saturated before mechanical

testing. Because of these drawbacks, the only event of interest experimentally observed was the 0/90 delaminations

which initiated at the base of a transverse crack and the free edge. For this event, the test results were combined with
the FE data to obtain the critical energy release rates for the crack.

Figures 4.18 to 4.25 present the finite-element-produced Ce and CT curves for each case studied. Note that

for simplicity, the (01/903) s and (02/902) s laminates were employed in the FE runs. To compensate for this, the linear
scale factor t of equation (3.5) was replaced by 2t.

The experimental results showed that transverse and longitudinal cracks were saturated before tensile test-

ing; hence, no threshold strain data from the experiments was acquired. Because of this, only a description of the

strain energy release rates for these events is given.

In the case of secondary transverse cracks, the Ce coefficients of both laminates revealed unstable growth.
As an initial flaw propagates as the result of an applied uniaxial load, the available energy increases with crack size

without any increase in the load. The flaw will instantaneously grow to the physical limits of size, which, for this

case, was the free edge and the longitudinal plies.

The CT function of the (02/902) s revealed unstable behavior for a flaw with a crack length of less than 1.6
(a/t). This was followed by stable propagation, meaning that the thermal load had to be increased to cause further

growth. The (01/903) s displayed unstable crack growth throughout.

In the case of longitudinal splitting, the Ce for the (01/903) s was the only SERR curve with a stable growth.
An initial flaw would propagate to a value of 1 (a/t) and then an additional load would be needed for further growth.

At 2.0 (a/t), the Ce was again unstable. The C T for the lay-up was unstable throughout. For the (02/902) s laminate,
both the C e and the C T curves were unstable.

In both transverse and split cracks, the SERR due to thermal loading was the dominating term. This was

obvious from the fact that both events were saturated with cracks before mechanical loading. Also, because each

SERR was dependent only on the component of the load which was transverse to the crack propagation, the fracture

events were primarily mode I. Hence, it was assumed that these two events had equivalent G C values.
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Figure 4.18.---Strain energy release rate (SERR) coefficients Ce and CT for secondary transverse cracking in (01/903) s
laminate.
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For the split-induced delamination, the C e curves for both lay-ups showed unstable crack propagation up to
a size of 0.9 (A/t 2 where A is area) followed by stable growth, but the C T curves differed. Values for thermal SERR

in the (02/902) s ply were near zero and were minor when compared to the SERR due to mechanical load. However,

for the (01/903) laminate, the thermal loads were still large with respect to mechanical loads.
Free-edge 0/90 delamination was the only event which could be analyzed both analytically and experimen-

tally. For both laminate types, the C e and CT curves showed stable growth. The experimental observations also
showed stable growth except for near failure loads. At this point, propagation was unstable and was probably the

result of the interaction of multiple events which occurred near the ultimate laminate stress.
Wang, Chou, and Lei (1984) stated that a delamination is observable when the crack area is about 1 (A/t2).

Hence, from figures 4.24 and 4.25, the following values were obtained:

For the (01/903) s laminate,

C e at 1.0 (A/t 2) = 4.0x109 J m-3

C T at 1.0 (A/t 2) = 4.0 J m -3 °C--2

For the (02/902) s laminate,

Ce at 1.0 (A/t 2) = 3.5x109 J m -3

CTat 1.0 (A/t 2) = 3.8 J m-3 °C-2

Using values from table V for threshold strains, AT = 325 °C, and 2t = 2.82x10 -4 and solving equation (3.5) gave

the following values:

For the (02/906) s laminate,
G C = 333 J m-3

For the (04/904) s laminate,
G C = 354 J m-3

From these results it was seen that equation (3.5) was consistent and correlated well for both specimen types.

Because both lay-ups had similar shaped coefficient functions and mode ratios, the critical energy release rates were

expected to be about equal. The slight discrepancy was probably the result of the quality and statistical aspect of the

manufacturing process.
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CHAPTER V

SUMMARY AND FUTURE DIRECTION

Cross-ply pretest damage due to high-temperature processing was observed in the form of transverse and
longitudinal cracks. Also, shear-induced angled cracks existed in the 90 ° plies and were located at the base of the

transverse cracks. After loading the laminates, it was concluded that the transverse and longitudinal damage was

saturated before any mechanical loads were applied. The only fracture events which propagated further were delami-

nations and the unexpected angled cracks. Observation of the damage was carded out using the nondestructive

evaluation (NDE) techniques of acoustic emission, in situ x radiography, and real-time edge view microscopy.

The signatures of the acoustic signal utilized were amplitude and energy, neither of which made it possible

to discern between the matrix-dominated events of interest although fiber breaks did show up as distinct high peaks

in the amplitude-versus-strain plots. The discontinuities due to the existing damage were assumed to cause attenua-

tion effects in the AE signatures; hence, the difficulties in matrix event identification.

In situ x radiography was able to identify transverse and longitudinal cracks clearly whereas delaminations

and angled cracks were not recognized. Hence, delaminations occurring at the transverse crack and split crossing

points were not detected during the testing. The density of the fluorescent dye and its capability in penetrating nar-

row crack spacing was the probable cause of the detection difficulties. For future experiments, higher density dyes

should be employed when events with limited crack openings are examined.

Real-time edge view microscopy proved the most reliable source of information in this study. Further

propagation of angled cracks and free-edge 0/90 delaminations were observed and recorded on video tape at a mag-
nification of 50. The threshold strains at the occurrence of these events were also obtained. Because the method

could not be used to inspect the depth of the cracks into the specimen, the total surface areas of the events were not

known. The technique provided positive results although a second NDE method was needed to yield the information

concerning the area.

The experimental data obtained on the onset of damage in the cross-plies showed the events to be depen-

dent on the 90 ° plies thickness. All matrix damage events occurred at lower threshold strains in the cross-ply con-

talning the thicker 90 ° layers. As observed by the edge view method, the angled cracks transpired fast, followed by

the onset of free-edge 0/90 delamination. After a period of stable propagation, unstable growth ensued and emulated
into localized fiber failures. These fiber breaks were the last event before ultimate laminate failure.

The analytical model simulated the systems of interest including the initial transverse cracks, and it was

used to obtain the nondimensional strain energy release rate coefficients (SERR). By inducing the finite element

model to unite thermal and mechanical loads, the SERR coefficient curves were produced.

Because of the limitations in the NDE techniques and the pretest saturation of transverse and longitudinal

cracks, only the cases of free-edge 0/90 delamination were compared with the experimental results. The threshold

strains obtained from the experiments and the SERR coefficient curves were used to calculate the critical strain en-

ergy release rates for the case of free-edge 0/90 delamination in the two different cross-plies. Although the threshold

strains and the SERR curves were different for the two lay-ups, their critical strain energy release rates were essen-

tially equal because their SERR curves had similar shapes and mode ratios (GI/GII, GI/GIII).

Future directions involve further study of the SERR curves for different events, loading conditions, and

laminate lay-ups. By such investigations, analytical relationships can be developed between the critical strain energy

release rates and the characteristics of the SERR curves for a given material.

A thorough experimental and analytical examination of the angled cracks needs to be completed. Such a

study will enable a better understanding of the event and its interaction with other matrix-dominated fractures. Also

required are NDE methods which can reliably measure the area of a crack such as delamination. Further refinement

of the techniques employed for this study or the introduction of new NDE techniques is needed.
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results with an analytical model based on the classical linear fracture mechanics concept of strain energy release rate as

a criterion for crack growth was performed. The virtual crack closure theory was incorporated with a finite element

model to generate strain energy release rate curves for the analytical case. Celion carbon fiber/polyimide matrix

(G30-500/PMR-15) was the material tested with cross-ply lay-ups of (02/906) s and (04/904) s. The test specimens

contained thermally induced cracks caused by the high-temperature processing. The analytical model was updated to

compensate for the initial damage and to study further accumulation by taking into account the crack interactions. By

correlating the experimental and analytical data, the critical energy release rates were found for the observable events
of interest.
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